Calorimetry Worksheet:

$\mathbf{q}=\mathbf{m c \Delta} \boldsymbol{T} \quad$ or $\quad \mathbf{- q}=\mathbf{q} \quad$ or $\quad-m c \Delta T=m c \Delta T$

1. Determine the amount of heat energy in joules required to raise the temperature of 7.40 g of water from $29.0^{\circ} \mathrm{C}$ to $46.0^{\circ} \mathrm{C}$.
2. Calculate the joules of energy required to heat 454.3 g of water from $5.4^{\circ} \mathrm{C}$ to $98.6^{\circ} \mathrm{C}$.

Name:

Specific Heat Capacities of Common Substances:	
Substance	$\mathbf{J} / \mathbf{g}^{\mathbf{o}} \mathbf{C}$
Water (l)	4.184
Water (s)	2.03
Water (g)	2.0
Aluminum (s)	0.89
Iron (s)	0.45
Mercury (l)	0.14
Carbon (s)	0.71
Silver (s)	0.24
Gold (s)	0.13
4.184 Joules = 1 calorie	

3. What quantity of energy (in \mathbf{J} and cal) is required to heat a piece of iron weighing 1.31 g from $25.0^{\circ} \mathrm{C}$ to $46.0^{\circ} \mathrm{C}$?
4. A 5.63 g sample of solid gold is heated from $21.0^{\circ} \mathrm{C}$ to $32.0^{\circ} \mathrm{C}$. How much energy, (in J and cal) is required?
5. A 1.60 g sample of a metal that has the appearance of gold requires 5.8 J of energy to change its temperature from $23.0^{\circ} \mathrm{C}$ to $41^{\circ} \mathrm{C}$. Is the metal pure gold?
6. A 2.80 g sample of a pure metal requires 10.0 J of energy to change its temperature $15.0^{\circ} \mathrm{C}$. What is this metal?
7. How much heat energy is required to raise the temperature of a 30.0 g sample of aluminum from $15.0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$?
8. What would be the temperature of a 24.2 g sample of carbon if 575.6 J of heat energy was applied?
9. A sample of water raised its temperature from $45.7^{\circ} \mathrm{C}$ to $89.9^{\circ} \mathrm{C}$ when 4.36 kJ of heat energy was applied. What is the mass of the water sample?
10. A 450.0 g sample of silver was cooled from $125.0^{\circ} \mathrm{C}$ to $45.0^{\circ} \mathrm{C}$. How much heat energy did the sample lose?
11. A sample of iron having a mass of 93.3 g is heated to $65.58^{\circ} \mathrm{C}$ is placed in 75.0 g of water raising the temperature from $16.95^{\circ} \mathrm{C}$ to $22.24^{\circ} \mathrm{C}$. Find the specific heat capacity for this iron sample. The answer you find has had some lab errors due to human mistakes. Find your percent error for your work using

$$
\% \text { Error }=\frac{\text { Expected }- \text { Actual }}{\text { Expected Yield }} x 100=
$$

12. What is the resulting temperature when 35 g of water at $75^{\circ} \mathrm{C}$ is mixed with 15 g of water at $15^{\circ} \mathrm{C}$?
[^0]
[^0]: Answers: 1. 526J 2. 177000 J 3. 12J and 2.9 cal 4. 8.1 J and $1.9 \mathrm{cal} \quad 5.0 .20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and the sample is not pure gold $\quad 6.0 .238 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ is silver $\quad 7.530 \mathrm{~J} \quad 8.34{ }^{\circ} \mathrm{C}$ temp diff $\quad 9.23 .6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad 10 .-8640 \mathrm{~J}$ 11. $0.41 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and 8.89% error $12.57{ }^{\circ} \mathrm{C}$

